Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Int J Radiat Biol ; : 1-15, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647504

RESUMO

PURPOSE: To examine the distortion of the linear quadratic (LQ) model of in vitro cytogenetic dose response over an extended range of γ-ray doses by analyzing the available literature data, and to establish the dose ranges, in which the LQ dose response curve (DRC) can be most accurately fitted for biological dosimetry. MATERIALS AND METHODS: Data on yields of dicentrics (Dic) or dicentrics plus centric rings (Dic + CR) induced in vitro in human lymphocytes by acute γ-rays were extracted from 108 open sources. The overall dose response dataset in the dose range up to 50 Gy was fitted to a fractional-rational (FR) model, which included a 'basic' LQ function in the numerator, and a reduction factor dependent on the square of the dose in the denominator. Cytogenetic dose response data obtained at Grigoriev Institute for Medical Radiology, Kharkiv, Ukraine (GIMRO) in the range 0.1 - 20.3 Gy acute γ-rays were fitted to the LQ model with the progressive changing minimum or maximum radiation dose. RESULTS: The overall dose response, as expected, followed the LQ function in the dose range ≤5 Gy, but in the extended dose range appeared to be S-shaped, with intensive saturation and a plateau at doses ≥22 Gy. Coefficients of the 'basic' LQ equation in FR model were very close to many published DRCs; calculated asymptote was 17. Fitting of the GIMRO dataset to the LQ model with the shift of the dose range showed the increase in linear coefficient with the increment of either minimum or maximum radiation dose, while the decline of the quadratic coefficient was regulated mostly by the increase of the highest dose. The best goodness of fit, assessed by lower χ2 values, occurred for dose ranges 0.1 - 1.0 Gy; 0.5 - 5.9 Gy; 1.0 - 7.8 Gy; 2.0 - 9.6 Gy, 3.9 - 16.4 Gy and 5.9 - 20.3 Gy. The 'see-saw' effect in changes of LQ coefficients was confirmed by re-fitting datasets published by other laboratories. CONCLUSIONS: The classical LQ model with fixed coefficients appears to have limited applicability for cytogenetic dosimetry at radiation doses >5 Gy due to the saturation of the dose response. Different response of the LQ coefficients to the changes of the dose range must be considered during the DRC construction. Proper selection of minimum and maximum dose in calibration experiments makes it possible to improve the goodness of fit of the LQ DRC.

2.
Sci Prog ; 106(3): 368504231198935, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37769294

RESUMO

The purpose of this study was to establish the dose-response curves for biological dosimetry of the Dong Nam Institute of Radiological and Medical Sciences to monitor radiation exposure of local residents in the vicinity of the nuclear power plant. The blood samples of five healthy volunteers were irradiated with gamma ray, and each sample was divided equally for analysis of chromosomal aberrations by Giemsa staining and three-color fluorescence in situ hybridization painting of the triplet (chromosomes #1, #2, and #4). The results of chromosomal aberrations followed the Poisson distribution in all individual and averaged data which include inter-individual variation in radiation susceptibility. Cytogenetics Dose Estimate Software version 5.2 was used to fit the dose-response curve and to determine the coefficients of linear-quadratic equations. The goodness of fit of the curves and statistical significance of fitted α and ß-coefficients were confirmed in both Giemsa-based dicentric analysis and FISH-based translocation analysis. The coefficients calculated from the five-donor average data were almost identical in both of the analyses. We also present the results that the dose-response curve for dicentric chromosomes plus fragments could be more effective for dose estimation following low-dose radiation accidents.


Assuntos
Centrais Nucleares , Radiometria , Humanos , Hibridização in Situ Fluorescente , Radiometria/métodos , Aberrações Cromossômicas , República da Coreia
3.
Int J Radiat Biol ; 99(11): 1702-1715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37212632

RESUMO

PURPOSE: Previous research has highlighted the impact of radiation damage, with cancer patients developing acute disorders including radiation induced pneumonitis or chronic disorders including pulmonary fibrosis months after radiation therapy ends. We sought to discover biomarkers that predict these injuries and develop treatments that mitigate this damage and improve quality of life. MATERIALS AND METHODS: Six- to eight-week-old female C57BL/6 mice received 1, 2, 4, 8, 12 Gy or sham whole body irradiation. Animals were euthanized 48 h post exposure and lungs removed, snap frozen and underwent RNA isolation. Microarray analysis was performed to determine dysregulation of messenger RNA (mRNA), microRNA (miRNA), and long non-coding RNA (lncRNA) after radiation injury. RESULTS: We observed sustained dysregulation of specific RNA markers including: mRNAs, lncRNAs, and miRNAs across all doses. We also identified significantly upregulated genes that can indicate high dose exposure, including Cpt1c, Pdk4, Gdf15, and Eda2r, which are markers of senescence and fibrosis. Only three miRNAs were significantly dysregulated across all radiation doses: miRNA-142-3p and miRNA-142-5p were downregulated and miRNA-34a-5p was upregulated. IPA analysis predicted inhibition of several molecular pathways with increasing doses of radiation, including: T cell development, Quantity of leukocytes, Quantity of lymphocytes, and Cell viability. CONCLUSIONS: These RNA biomarkers might be highly relevant in the development of treatments and in predicting normal tissue injury in patients undergoing radiation treatment. We are conducting further experiments in our laboratory, which includes a human lung-on-a-chip model, to develop a decision tree model using RNA biomarkers.


Assuntos
MicroRNAs , Irradiação Corporal Total , Camundongos , Animais , Humanos , Irradiação Corporal Total/efeitos adversos , Qualidade de Vida , Camundongos Endogâmicos C57BL , Pulmão/efeitos da radiação , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Modelos Animais de Doenças , Receptor Xedar/genética , Receptor Xedar/metabolismo
4.
Cytogenet Genome Res ; 163(3-4): 163-177, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37071978

RESUMO

In the case of a radiological or nuclear event, biological dosimetry can be an important tool to support clinical decision-making. During a nuclear event, individuals might be exposed to a mixed field of neutrons and photons. The composition of the field and the neutron energy spectrum influence the degree of damage to the chromosomes. During the transatlantic BALANCE project, an exposure similar to a Hiroshima-like device at a distance of 1.5 km from the epicenter was simulated, and biological dosimetry based on dicentric chromosomes was performed to evaluate the participants ability to discover unknown doses and to test the influence of differences in neutron spectra. In a first step, calibration curves were established by irradiating blood samples with 5 doses in the range of 0-4 Gy at two different facilities in Germany (Physikalisch-Technische Bundesanstalt [PTB]) and the USA (the Columbia IND Neutron Facility [CINF]). The samples were sent to eight participating laboratories from the RENEB network and dicentric chromosomes were scored by each participant. Next, blood samples were irradiated with 4 blind doses in each of the two facilities and sent to the participants to provide dose estimates based on the established calibration curves. Manual and semiautomatic scoring of dicentric chromosomes were evaluated for their applicability to neutron exposures. Moreover, the biological effectiveness of the neutrons from the two irradiation facilities was compared. The calibration curves from samples irradiated at CINF showed a 1.4 times higher biological effectiveness compared to samples irradiated at PTB. For manual scoring of dicentric chromosomes, the doses of the test samples were mostly successfully resolved based on the calibration curves established during the project. For semiautomatic scoring, the dose estimation for the test samples was less successful. Doses >2 Gy in the calibration curves revealed nonlinear associations between dose and dispersion index of the dicentric counts, especially for manual scoring. The differences in the biological effectiveness between the irradiation facilities suggested that the neutron energy spectrum can have a strong impact on the dicentric counts.


Assuntos
Nêutrons , Humanos , Alemanha
5.
FASEB J ; 36(11): e22621, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36260291

RESUMO

In order to achieve the goal of rapid response, effective controland protection of life inlarge-scale radiation events, the IAEA Manual 2011 has been revised based on the data of radio-sensitivity, dose-rate findings. Analyze individual differences in radiation sensitivity using 60 Co radiation (0.27 Gy/min). Chromosomal aberrations with different irradiation dose rates were used to establish the biological dose curve and analyze the excess of the "dicentric + ring" caused by the dose rate at each dose point; DAPI-images and Metafer 4 were used to capture metaphase images and make further analysis. The data were collected in 2020, Dicentric + ring/100 Cells was 17.5-43.8, the average value was28.32 ± 6.98. The mean value of Dicentric + ring/100 Cells was 31.37 in males while 25.27 in females, there are significant differences (p < .01). The irradiation dose is dominant, At each dose point, the value of"(dicentric chromosome + centric rings)/cell" is proportional to "dose rate", that is, Y = kx + b, within the dose range of 1-5 Gy, "(dicentric chromosome + centric rings)/Cell" holds a quadratic linear relationship with dose rate, that is, y = ax2 + bx + c; The DAPI-images might give you more hints than those of conventional Giemsa-stain. The authors recommend that the IAEA Manual 2011 could be revised based on data of radio-sensitivity and dose-rate, which may contribute to the establishment of a unified dose-response calibration curve and stimulation of potential for automation in cytogenetic biodosimetry. (1) Individual differences of radiosensitivity are very large. (2) At each dose point, "(dicentric chromosome + centric rings)/cell" is proportional to "dose rate", that is, Y = kx + b. (3) "(dicentric chromosome + centric rings)/Cell" is a quadratic linear relationship with dose rate, that is, y = ax2 + bx + c. (4) We created a "Unity Standard Curve of Biological Dose Estimation". Creating a Unity Standard Curve of Biological Dose, under these circumstances, we can form a joint and rapid response to a nuclear and radiological accident.


Assuntos
Radioisótopos de Cobalto , Radiometria , Masculino , Feminino , Humanos , Radiometria/métodos , Tolerância a Radiação/genética , Análise Citogenética
6.
Cancers (Basel) ; 14(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35740531

RESUMO

Boron Neutron Capture Therapy (BNCT) is a promising binary disease-targeted therapy, as neutrons preferentially kill cells labeled with boron (10B), which makes it a precision medicine treatment modality that provides a therapeutic effect exclusively on patient-specific tumor spread. Contrary to what is usual in radiotherapy, BNCT proposes cell-tailored treatment planning rather than to the tumor mass. The success of BNCT depends mainly on the sufficient spatial biodistribution of 10B located around or within neoplastic cells to produce a high-dose gradient between the tumor and healthy tissue. However, it is not yet possible to precisely determine the concentration of 10B in a specific tissue in real-time using non-invasive methods. Critical issues remain to be resolved if BNCT is to become a valuable, minimally invasive, and efficient treatment. In addition, functional imaging technologies, such as PET, can be applied to determine biological information that can be used for the combined-modality radiotherapy protocol for each specific patient. Regardless, not only imaging methods but also proteomics and gene expression methods will facilitate BNCT becoming a modality of personalized medicine. This work provides an overview of the fundamental principles, recent advances, and future directions of BNCT as cell-targeted cancer therapy for personalized radiation treatment.

7.
Front Public Health ; 10: 903509, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655448

RESUMO

In biological dosimetry, dose-response curves are essential for reliable retrospective dose estimation of individual exposure in case of a radiation accident. Therefore, blood samples are irradiated in vitro and evaluated based on the applied assay. Accurate physical dosimetry of the irradiation performance is a critical part of the experimental procedure and is influenced by the experimental setup, especially when X-ray cabinets are used. The aim of this study was to investigate variations and pitfalls associated with the experimental setups used to establish calibration curves in biological dosimetry with X-ray cabinets. In this study, irradiation was performed with an X-ray source (195 kV, 10 mA, 0.5 mm Cu filter, dose rate 0.52 Gy/min, 1st and 2nd half-value layer = 1.01 and 1.76 mm Cu, respectively, average energy 86.9 keV). Blood collection tubes were irradiated with a dose of 1 Gy in vertical or horizontal orientation in the center of the beam area with or without usage of an additional fan heater. To evaluate the influence of the setups, physical dose measurements using thermoluminescence dosimeters, electron paramagnetic resonance dosimetry and ionization chamber as well as biological effects, quantified by dicentric chromosomes and micronuclei, were compared. This study revealed that the orientation of the sample tubes (vertical vs. horizontal) had a significant effect on the radiation dose with a variation of -41% up to +49% and contributed to a dose gradient of up to 870 mGy inside the vertical tubes due to the size of the sample tubes and the associated differences in the distance to the focal point of the tube. The number of dicentric chromosomes and micronuclei differed by ~30% between both orientations. An additional fan heater had no consistent impact. Therefore, dosimetric monitoring of experimental irradiation setups is mandatory prior to the establishment of calibration curves in biological dosimetry. Careful consideration of the experimental setup in collaboration with physicists is required to ensure traceability and reproducibility of irradiation conditions, to correlate the radiation dose and the number of aberrations correctly and to avoid systematical bias influencing the dose estimation in the frame of biological dosimetry.


Assuntos
Radiometria , Radiometria/métodos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Raios X
8.
Poblac. salud mesoam ; 19(2)jun. 2022.
Artigo em Espanhol | LILACS, SaludCR | ID: biblio-1386957

RESUMO

Resumen Introducción: el laboratorio de citogenética del Instituto de Investigaciones en Salud (INISA) de la Universidad de Costa Rica estableció un Servicio de Dosimetría Biológica en enero del 2020 utilizando biomarcadores citogenéticos de exposición a radiaciones ionizantes. Es el primero de su tipo en la región centroamericana. Objetivo: establecer un servicio de dosimetría biológica para Costa Rica, elaborando una curva de calibración dosis-efecto para rayos gamma. Metodología: para la realización de la curva de calibración se irradiaron muestras de sangre periférica in vitro con rayos gamma de dos voluntarios, uno femenino y otro masculino, en 11 puntos de dosis en el rango de 0 a 5 Gy. Se cultivó la sangre acorde a los protocolos internacionales durante 48 horas y se registraron las aberraciones inducidas. Los programas Dose Estimate V5.2 y R versión 4.03 se utilizaron para el cálculo de los coeficientes de la curva de calibración que correlaciona la frecuencia de cromosomas dicéntricos con la dosis. Resultados: los coeficientes de la curva son α: 0.02737±0.00658, ß: 0,05938±0,00450 y C: 0.00129±0.00084. Estos coeficientes tienen valores similares a los reportados internacionalmente. La curva se validó calculando dos dosis incógnitas, en la primera incógnita la dosis suministrada fue de 1,5 Gy y la dosis estimada fue 1,47 Gy y en la segunda la dosis suministrada fue de 4 Gy y la dosis estimada fue 3,616 Gy, para ambos casos no existen diferencias estadísticamente significativas entre las dosis suministradas y las estimadas. Conclusiones: actualmente El Servicio de Dosimetría Biológica del INISA puede estimar dosis absorbida en personas que se sospecha de una sobre exposición a rayos gamma en personal ocupacionalmente expuesto o personas involucradas en un accidente radiológico.


Abstract Introduction. The cytogenetics laboratory of the Health Research Institute (INISA) of the University of Costa Rica established a Biological Dosimetry Service in January 2020 using cytogenetic biomarkers of exposure to ionizing radiation. It is the first of its kind in the Central American region. Objective: establish a biological dosimetry service for Costa Rica, developing a dose-effect calibration curve for gamma rays. Methodology: to carry out the calibration curve, peripheral blood samples from two volunteers, one female and the other male, were irradiated in vitro with gamma rays, at 11 dose points in the range of 0 to 5 Gy. Blood was cultured according to international protocols for 48 hours and induced aberrations were recorded. The Dose Estimate V5.2 and R version 4.03 programs were used to calculate the coefficients of the calibration curve that correlates the frequency of dicentric chromosomes with the dose. Results: the coefficients of the curve are α: 0.02737 ± 0.00658, ß: 0.05938 ± 0.00450 and C: 0.00129 ± 0.00084. These coefficients have values similar to those reported internationally. The curve was validated by calculating two unknown doses, in the first unknown case the delivered dose was 1.5 Gy and the estimated dose was 1.47 Gy and in the second case the delivered dose was 4 Gy and the estimated dose was 3.616 Gy. for both cases there are no statistically significant differences between the delivered and estimated doses. Conclusions: the Biological Dosimetry Service of the INISA can estimate absorbed dose in persons suspected of overexposure to gamma rays in occupationally exposed personnel or persons involved in a radiological accident.Health is loaded with symbolisms and practical manifestations that differ according to social groups and sociocultural contexts. In order to make everyday life and needs visible, the Theoretical Paradigm of Social Representations provides the theoretical-methodological bases necessary to understand the common sense knowledge associated with health among the Nicaraguan migrant population in Costa Rica. Methodology: Qualitative study with ethnographic approach that aimed to identify the social representation of health, through the process of objectification, present among Nicaraguan migrants living in Costa Rica. Data collected through semi-structured interviews, participant observation, and field diaries. Processing according to Content Analysis. Results: The social representation of health found behaves analogously to a formula; where, the search for peaceful environments is added to the achievement of financial stability to result in two interdependent representations: 1) Health as physical-mental strength; and 2) Health as a future and abstract sensation of well-being, happiness and transcendence. The socio-political antecedents in Nicaragua, the migratory process, and the adaptation to Costa Rica play a preponderant role in shaping the representation on health. Conclusion: Social representations about health have direct practical implications on the ways of life and needs of migrant groups. Understanding their common sense knowledge allows to move towards more contextualized public policies. More integration of the thoughts, opinions and feelings of migrants in decision-making platforms is recommended.


Assuntos
Humanos , Masculino , Feminino , Radiação Ionizante , Dosimetria , Costa Rica , Raios gama
9.
Cells ; 11(10)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35626692

RESUMO

Nuclear medicine staff are constantly exposed to low doses of ionizing radiation. This study investigated the level of genotoxic effects in hospital employees exposed to routinely used 131I and 99mTc in comparison with a control group. The study compared the results of physical and biological monitoring in peripheral blood lymphocytes. The effects of confounding factors, such as smoking status and physical activity, were also considered. Physical dosimetry monitoring revealed differences in the individual annual effective dose as measured by finger ring dosimeter and whole-body dosimeter between the 131I- and 99mTc-exposed groups. The DNA damage studies revealed differences between the groups in terms of excess premature chromosome condensation (PCC) fragments and tail DNA. Physical activity and smoking status differentiated the investigated groups. When assessed by the level of physical activity, the highest mean values of tail DNA were observed for the 99mTc group. When assessed by work-related physical effort, excess PCC fragments were significantly higher in the 131I group than in the control group. In the investigated groups, the tail DNA values were significantly different between non-smokers and past or current smokers, but excess PCC fragments did not significantly differ by smoking status. It is important to measure exposure to low doses of ionizing radiation and assess the potential risk from this exposure. Such investigations support the need to continue epidemiological and experimental studies to improve our understanding of the mechanisms of the health effects of radionuclides and to develop predictive models of the behavior of these complex systems in response to low-dose radiation.


Assuntos
Dano ao DNA , Radioisótopos do Iodo , Medicina Nuclear , Exposição Ocupacional , Tecnécio , Monitoramento Biológico , DNA , Dano ao DNA/efeitos da radiação , Humanos , Radioisótopos do Iodo/uso terapêutico , Radioisótopos do Iodo/toxicidade , Exposição Ocupacional/efeitos adversos , Tecnécio/uso terapêutico , Tecnécio/toxicidade
10.
J Radiol Prot ; 42(2)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35196651

RESUMO

Large-scale radiological accidents or nuclear terrorist incidents involving radiological or nuclear materials can potentially expose thousands, or hundreds of thousands, of people to unknown radiation doses, requiring prompt dose reconstruction for appropriate triage. Two types of dosimetry methods namely, biodosimetry and physical dosimetry are currently utilized for estimating absorbed radiation dose in humans. Both methods have been tested separately in several inter-laboratory comparison exercises, but a direct comparison of physical dosimetry with biological dosimetry has not been performed to evaluate their dose prediction accuracies. The current work describes the results of the direct comparison of absorbed doses estimated by physical (smartphone components) and biodosimetry (dicentric chromosome assay (DCA) performed in human peripheral blood lymphocytes) methods. For comparison, human peripheral blood samples (biodosimetry) and different components of smartphones, namely surface mount resistors (SMRs), inductors and protective glasses (physical dosimetry) were exposed to different doses of photons (0-4.4 Gy; values refer to dose to blood after correction) and the absorbed radiation doses were reconstructed by biodosimetry (DCA) and physical dosimetry (optically stimulated luminescence (OSL)) methods. Additionally, LiF:Mg,Ti (TLD-100) chips and Al2O3:C (Luxel) films were used as reference TL and OSL dosimeters, respectively. The best coincidence between biodosimetry and physical dosimetry was observed for samples of blood and SMRs exposed toγ-rays. Significant differences were observed in the reconstructed doses by the two dosimetry methods for samples exposed to x-ray photons with energy below 100 keV. The discrepancy is probably due to the energy dependence of mass energy-absorption coefficients of the samples extracted from the phones. Our results of comparative validation of the radiation doses reconstructed by luminescence dosimetry from smartphone components with biodosimetry using DCA from human blood suggest the potential use of smartphone components as an effective emergency triage tool for high photon energies.


Assuntos
Radiometria , Triagem , Humanos , Fótons , Dosímetros de Radiação , Radiometria/métodos , Triagem/métodos , Raios X
11.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055062

RESUMO

Theoretical evaluations indicate the radiation weighting factor for thermal neutrons differs from the current International Commission on Radiological Protection (ICRP) recommended value of 2.5, which has radiation protection implications for high-energy radiotherapy, inside spacecraft, on the lunar or Martian surface, and in nuclear reactor workplaces. We examined the relative biological effectiveness (RBE) of DNA damage generated by thermal neutrons compared to gamma radiation. Whole blood was irradiated by 64 meV thermal neutrons from the National Research Universal reactor. DNA damage and erroneous DNA double-strand break repair was evaluated by dicentric chromosome assay (DCA) and cytokinesis-block micronucleus (CBMN) assay with low doses ranging 6-85 mGy. Linear dose responses were observed. Significant DNA aberration clustering was found indicative of high ionizing density radiation. When the dose contribution of both the 14N(n,p)14C and 1H(n,γ)2H capture reactions were considered, the DCA and the CBMN assays generated similar maximum RBE values of 11.3 ± 1.6 and 9.0 ± 1.1, respectively. Consequently, thermal neutron RBE is approximately four times higher than the current ICRP radiation weighting factor value of 2.5. This lends support to bimodal peaks in the quality factor for RBE neutron energy response, underlining the importance of radiological protection against thermal neutron exposures.


Assuntos
Modelos Teóricos , Nêutrons , Eficiência Biológica Relativa , Aberrações Cromossômicas/efeitos da radiação , Dano ao DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Linfócitos/metabolismo , Linfócitos/efeitos da radiação , Testes para Micronúcleos/métodos
12.
J Radiat Res ; 63(2): 247-254, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-34977921

RESUMO

The International Atomic Energy Agency (IAEA) and Hiroshima International Council for Health Care of the Radiation-Exposed (HICARE) jointly organized two relevant workshops in Hiroshima, Japan, i.e. a Training Meeting 'Biodosimetry in the 21st century' (BIODOSE-21) on 10-14 June 2013 and a Workshop on 'Biological and internal dosimetry: recent advance and clinical applications' which took place between 17 and 21 February 2020. The main objective of the first meeting was to develop the ability of biodosimetry laboratories to use mature and novel techniques in biological dosimetry for the estimation of radiation doses received by individuals and populations. This meeting had a special focus on the Asia-Pacific region and was connected with the then on-going IAEA Coordinated Research Project (CRP) E35008 'Strengthening of "Biological dosimetry" in IAEA Member States: Improvement of current techniques and intensification of collaboration and networking among the different institutes' (2012-17). The meeting was attended by 25 participants, which included 11 lecturers. The 14 trainees for this meeting came from India, Indonesia, Japan, Malaysia, Philippines, Republic of Korea, Singapore, Thailand and Vietnam. During the meeting 13 lectures by HICARE and IAEA invited lecturers were delivered besides eight research reports presented by the IAEA CRP E35008 network centers from the Asia-Pacific region. Two laboratory exercises were also undertaken, one each at Hiroshima University and the Radiation Effects Research Foundation (RERF). The second training workshop aimed to discuss with the participants the use of mature and novel techniques in biological and internal dosimetry for the estimation of radiation effects by accidental, environmental and medical exposures. The workshop was attended by 19 participants from Indonesia, Jordan, Oman, Philippines, Singapore, Syrian Arab Republic, Thailand, UAE, USA and Yemen. The main outcome of both meetings was a review of the state-of-the-art of biodosimetry and internal dosimetry and their future perspectives in medical management. This report highlights the learning outcome of two meetings for the benefit of all stake-holders in the field of biological and internal dosimetry.


Assuntos
Lesões por Radiação , Radiação , Humanos , Agências Internacionais , Radiometria/métodos , Tailândia
13.
Int J Radiat Biol ; 98(3): 421-427, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34515621

RESUMO

PURPOSE: The aim of this brief personal, high level review is to consider the state of the art for biological dosimetry for radiation routine and emergency response, and the potential future progress in this fascinating and active field. Four areas in which biomarkers may contribute to scientific advancement through improved dose and exposure characterization, as well as potential contributions to personalized risk estimation, are considered: emergency dosimetry, molecular epidemiology, personalized medical dosimetry, and space travel. CONCLUSION: Ionizing radiation biodosimetry is an exciting field which will continue to benefit from active networking and collaboration with the wider fields of radiation research and radiation emergency response to ensure effective, joined up approaches to triage; radiation epidemiology to assess long term, low dose, radiation risk; radiation protection of workers, optimization and justification of radiation for diagnosis or treatment of patients in clinical uses, and protection of individuals traveling to space.


Assuntos
Incidentes com Feridos em Massa , Proteção Radiológica , Humanos , Radiação Ionizante , Radiometria , Triagem
15.
Radiat Oncol J ; 39(3): 159-166, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34610654

RESUMO

Biological dosimetry is the measurement of radiation-induced changes in the human to measure short and long-term health risks. Biodosimetry offers an independent means of obtaining dose information and also provides diagnostic information on the potential for "partial-body" exposure information using biological indicators and otherwise based on computer modeling, dose reconstruction, and physical dosimetry. A variety of biodosimetry tools are available and some features make some more valuable than others. Among the available biodosimetry tool, cytogenetic biodosimetry methods occupy an exclusive and advantageous position. The cytogenetic analysis can complement physical dosimetry by confirming or ruling out an accidental radiological exposure or overexposures. We are discussing the recent developments and adaptability of currently available cytogenetic biological dosimetry assays.

16.
Int J Radiat Biol ; 97(9): 1181-1198, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34138666

RESUMO

PURPOSE: Biological and/or physical assays for retrospective dosimetry are valuable tools to recover the exposure situation and to aid medical decision making. To further validate and improve such biological and physical assays, in 2019, EURADOS Working Group 10 and RENEB performed a field exercise in Lund, Sweden, to simulate various real-life exposure scenarios. MATERIALS AND METHODS: For the dicentric chromosome assay (DCA), blood tubes were located at anthropomorphic phantoms positioned in different geometries and were irradiated with a 1.36 TBq 192Ir-source. For each exposure condition, dose estimates were provided by at least one laboratory and for four conditions by 17 participating RENEB laboratories. Three radio-photoluminescence glass dosimeters were placed at each tube to assess reference doses. RESULTS: The DCA results were homogeneous between participants and matched well with the reference doses (≥95% of estimates within ±0.5 Gy of the reference). For samples close to the source systematic underestimation could be corrected by accounting for exposure time. Heterogeneity within and between tubes was detected for reference doses as well as for DCA doses estimates. CONCLUSIONS: The participants were able to successfully estimate the doses and to provide important information on the exposure scenarios under conditions closely resembling a real-life situation.


Assuntos
Cromossomos Humanos/genética , Cromossomos Humanos/efeitos da radiação , Radiometria , Aberrações Cromossômicas/efeitos da radiação , Humanos , Exposição à Radiação/análise , Estudos Retrospectivos
17.
J Radiol Prot ; 40(4)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33142276

RESUMO

In May 2016, a new linear accelerator (Linac) was installed at a hospital oncology department. A team of individuals supervised the installation, including a Radiation Oncologist who acted as an independent observer to the installation, calibration, beam data collection and shielding measurements. In order to ensure the shielding was correct, a licensed representative of the Turkish Atomic Energy Authority carried out formal measurements of the gamma and neutron dose rates at a variety of locations in and around the Linac facility. At 18 MV, the maximum neutron dose rate was 172µSv h-1and the maximum gamma dose rate was approximately 2µSv h-1(ambient dose equivalent in both cases), significantly higher than the expected and local background doses. As the neutron dose rates in particular were so high, it was concluded that the shielding was not sufficient, potentially due to an inadequate design. In order to rule out overexposure during the installation, biological dosimetry was carried out for a number of the individuals involved. The estimated doses were closely aligned with the doses measured using commercially available neutron dosemeters and were also within the tolerance dose ranges estimated using Monte Carlo simulations, which also supported the investigation. The results underline the need for careful planning before and after installation of new radiation exposure facilities, especially high MV Linac operation for which photo-neutrons might need to be mitigated. The results clearly indicate the importance of such checks, in addition to demonstrating the relevance of biological dosimetry supported by modelling strategies complex or unclear exposure scenarios.


Assuntos
Proteção Radiológica , Humanos , Método de Monte Carlo , Nêutrons , Aceleradores de Partículas , Doses de Radiação , Radiometria
18.
Int J Radiat Biol ; 96(12): 1571-1584, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33001765

RESUMO

PURPOSE: The traditional workflow for biological dosimetry based on manual scoring of dicentric chromosomes is very time consuming. Especially for large-scale scenarios or for low-dose exposures, high cell numbers have to be analyzed, requiring alternative scoring strategies. Semi-automatic scoring of dicentric chromosomes provides an opportunity to speed up the standard workflow of biological dosimetry. Due to automatic metaphase and chromosome detection, the number of counted chromosomes per metaphase is variable. This can potentially introduce overdispersion and statistical methods for conventional, manual scoring might not be applicable to data obtained by automatic scoring of dicentric chromosomes, potentially resulting in biased dose estimates and underestimated uncertainties. The identification of sources for overdispersion enables the development of methods appropriately accounting for increased dispersion levels. MATERIALS AND METHODS: Calibration curves based on in vitro irradiated (137-Cs; 0.44 Gy/min) blood from three healthy donors were analyzed for systematic overdispersion, especially at higher doses (>2 Gy) of low LET radiation. For each donor, 12 doses in the range of 0-6 Gy were scored semi-automatically. The effect of chromosome number as a potential cause for the observed overdispersion was assessed. Statistical methods based on interaction models accounting for the number of detected chromosomes were developed for the estimation of calibration curves, dose and corresponding uncertainties. The dose estimation was performed based on a Bayesian Markov-Chain-Monte-Carlo method, providing high flexibility regarding the implementation of priors, likelihood and the functional form of the association between predictors and dicentric counts. The proposed methods were validated by simulations based on cross-validation. RESULTS: Increasing dose dependent overdispersion was observed for all three donors as well as considerable differences in dicentric counts between donors. Variations in the number of detected chromosomes between metaphases were identified as a major source for the observed overdispersion and the differences between donors. Persisting overdispersion beyond the contribution of chromosome number was modeled by a Negative Binomial distribution. Results from cross-validation suggested that the proposed statistical methods for dose estimation reduced bias in dose estimates, variability between dose estimates and improved the coverage of the estimated confidence intervals. However, the 95% confidence intervals were still slightly too permissive, suggesting additional unknown sources of apparent overdispersion. CONCLUSIONS: A major source for the observed overdispersion could be identified, and statistical methods accounting for overdispersion introduced by variations in the number of detected chromosomes were developed, enabling more robust dose estimation and quantification of uncertainties for semi-automatic counting of dicentric chromosomes.


Assuntos
Aberrações Cromossômicas/efeitos da radiação , Cromossomos Humanos/genética , Cromossomos Humanos/efeitos da radiação , Adulto , Automação , Calibragem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Radiometria , Incerteza
19.
J Pers Med ; 10(3)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937746

RESUMO

The cytokinesis-block micronucleus (CBMN) assay is a standardized method used for genotoxicity studies. Conventional whole blood cultures (WBC) are often used for this assay, although the assay can also be performed on isolated peripheral blood mononuclear cell (PBMC) cultures. However, the standardization of a protocol for the PBMC CBMN assay has not been investigated extensively. The aim of this study was to optimize a reliable CBMN assay protocol for fresh and cryopreserved peripheral blood mononuclear cells (PBMCS), and to compare micronuclei (MNi) results between WBC and PBMC cultures. The G0 CBMN assay was performed on whole blood, freshly isolated, and cryopreserved PBMCS from healthy human blood samples and five radiosensitive patient samples. Cells were exposed to 220 kV X-ray in vitro doses ranging from 0.5 to 2 Gy. The optimized PBMC CBMN assay showed adequate repeatability and small inter-individual variability. MNi values were significantly higher for WBC than for fresh PBMCS. Additionally, cryopreservation of PBMCS resulted in a significant increase of MNi values, while different cryopreservation times had no significant impact. In conclusion, our standardized CBMN assay on fresh and cryopreserved PBMCS can be used for genotoxicity studies, biological dosimetry, and radiosensitivity assessment.

20.
Radiat Environ Biophys ; 59(3): 357-387, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32372284

RESUMO

This work presents an overview of the applications of retrospective dosimetry techniques in case of incorporation of radionuclides. The fact that internal exposures are characterized by a spatially inhomogeneous irradiation of the body, which is potentially prolonged over large periods and variable over time, is particularly problematic for biological and electron paramagnetic resonance (EPR) dosimetry methods when compared with external exposures. The paper gives initially specific information about internal dosimetry methods, the most common cytogenetic techniques used in biological dosimetry and EPR dosimetry applied to tooth enamel. Based on real-case scenarios, dose estimates obtained from bioassay data as well as with biological and/or EPR dosimetry are compared and critically discussed. In most of the scenarios presented, concomitant external exposures were responsible for the greater portion of the received dose. As no assay is available which can discriminate between radiation of different types and different LETs on the basis of the type of damage induced, it is not possible to infer from these studies specific conclusions valid for incorporated radionuclides alone. The biological dosimetry assays and EPR techniques proved to be most applicable in cases when the radionuclides are almost homogeneously distributed in the body. No compelling evidence was obtained in other cases of extremely inhomogeneous distribution. Retrospective dosimetry needs to be optimized and further developed in order to be able to deal with real exposure cases, where a mixture of both external and internal exposures will be encountered most of the times.


Assuntos
Radiação Ionizante , Radiometria/métodos , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Radioisótopos/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...